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Abstract. Starting from a microcanonical basis with the principle of equal a priori probability,
it is shown using the method of steepest descents that besides ordinary Boltzmann–Gibbs theory
with the exponential distribution a theory describing systems with power-law distributions can also
be derived.

Systems exhibiting power-law behaviour in their probability distributions are quite ubiquitous
in nature. Examples are statistical properties of fully developed turbulence [1], anomalous
diffusion [2], the velocity distributions of vibrating powders [3], thermalization of heavy
quarks in collisional processes [4], the transverse-momentum distributions of hadron jets in
e+e− collisions [5] and molecular line-shape cumulants in low-temperature glasses [6]. Many
such systems are typically in non-equilibrium. However, the structures of statistical power-law
distributions persist for remarkably long periods or over wide regimes. Therefore, it is natural
to imagine that they reside in certain kinds of maximum-entropy states. It is an interesting
problem to understand the properties of such systems based on the principles of statistical
mechanics, because these systems can hardly be described by ordinary Boltzmann–Gibbs
canonical ensemble theory, whose distribution contains the exponential factor. In this paper, we
show that it is actually possible to derive non-Boltzmann–Gibbs theory from the microcanonical
basis with the principle of equal a priori probability and the resulting distribution may be of
the required power law.

We first recall the Gibbs theorem [7, 8], which states that a subsystem of a microcanonical
ensemble with large degrees of freedom is uniquely characterized by the standard canonical
distribution. Historically, this theorem has repeatedly been proved in various ways, such as
the method of counting and the method of steepest descents. Starting from the microcanonical
basis with the principle of equal a priori probability, the exponential distribution is obtained
for the canonical ensemble. Therefore, if the Gibbs theorem were universal, then any of the
equilibrium theories other than Boltzmann–Gibbs theory could not exist and consequently
power-law distributions would be excluded, as long as microcanonical ensemble theory is the
basis. Here, we show that a route to canonical ensemble theory for systems with power-law
distributions is actually allowed within the microcanonical ensemble theory.

To exhibit this route, we begin with the standard discussion [9] concerning the Gibbs
theorem by considering a classical system s and take its N replicas s1, s2, . . . , sN . The
collection S = {sα}α=1,2,...,N is referred to as a supersystem. LetAα be a physical quantity (e.g.
the energy) associated with the system sα . It is a statistical random variable and its value denoted
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by a(mα) is assumed to be bounded from below, where mα labels the allowed configurations
of sα . The quantity of physical interest is the average of {Aα}α=1,2,...,N over the supersystem:
(1/N)

∑N
α=1 Aα . According to microcanonical ensemble theory, the probabilities of finding

S in the configurations in which the values of the average quantity lies around a certain value
ā, i.e. ∣∣∣∣ 1

N

N∑
α=1

a(mα)− ā

∣∣∣∣ < ε (1)

are all equal. ε is assumed to be

ε ∼ O(N−1−δ) (δ > 0). (2)

In the ordinary discussion [9] of deriving the Boltzmann–Gibbs exponential distribution, ε
is taken to be of O

(
1/

√
N

)
, which comes from the law of large numbers in the central-limit

theorem. However, in the present discussion, what we are interested in is the power-law
distributions of the Lévy type. Therefore, the relevant mathematical principle is the Lévy–
Gnedenko generalized central-limit theorem in the half-space [10] (due to the boundedness
of a(mα) from below), from which the condition in equation (2) arises. More precisely, the
generalized law of large numbers in the generalized central-limit theorem indicates that ε
is of O(N−1/α), where α is the characteristic exponent of the Lévy-stable distributions (see
equation (29)). Since α is in the range (0, 1) for the half-space problem [10], consequently
equation (2) follows with δ being an arbitrary positive number. In this respect, we should
recall the fact that at this level α → 1–0 is the singular limit and so the ordinary law of large
numbers is not reproduced in such a naive limiting procedure.

The equiprobability P (m1,m2, . . . , mN) associated with this condition is

P(m1,m2, . . . , mN) ∝ θ(ε − |M|) (3)

M ≡ 1

N

N∑
α=1

a(mα)− ā

= 1

N
[a(m1)− ā] +

1

N
[a(m2)− ā] + · · · +

1

N
[a(mN)− ā] (4)

where θ(x) in equation (3) denotes the Heaviside unit-step function. To shift from
microcanonical ensemble theory to canonical ensemble theory, we fix the objective system and
eliminate the others. The probability of finding the objective system, say s1, in the configuration
m1 = m is given by

p(m) =
∑

m2,...,mN

P (m,m2, . . . , mN) (5)

which characterizes the canonical ensemble.
To prove the Gibbs theorem, the following integral representation of the step function is

employed:

θ(x) =
∫ β+i∞

β−i∞
dφ

eφx

2π iφ
(6)

where β is an arbitrary positive constant. Then, in the large-N limit, one applies the method of
steepest descents to evaluate the integration overφ. Contextually, it is clear that the exponential
distribution in Boltzmann–Gibbs canonical ensemble theory has its origin in this integral
representation of θ(x) using the exponential function. As long as the exact step function is used
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without any approximation, the exponential distribution can never be realized. The steepest-
descent approximation plays an essential role in the derivation of the exponential distribution.
A crucial point here is that the result obtained by the steepest-descent approximation depends
on the choice of the representation of the step function, in general.

To examine the possibility of obtaining the power-law-type distribution, we consider the
‘q-exponential function’, which is defined by

eq(x) ≡
{

[1 + (1 − q)x]1/(1−q) (1 + (1 − q)x > 0)

0 (1 + (1 − q)x � 0)
(7)

where q is a real parameter satisfying the condition

q > 1. (8)

In the limit q → 1 + 0, eq(x) converges to the ordinary exponential function. An important
point is that even if the exponential function in the integrand in equation (6) is replaced by the
q-exponential function, still the equality

θ(x) =
∫ β+i∞

β−i∞
dφ

eq(φx)

2π iφ
(9)

holds, as long as β is taken to satisfy

1 − (q − 1)βxmax > 0. (10)

Here, xmax is the fixed maximum value of x in its range of interest, and it turns out to be
possible to let it become arbitrarily large in the subsequent discussion of the steepest-descent
approximation. (We shall return to this point later.) In equation (9), there is a branch point
in the integrand, and therefore a cut has to be introduced in the complex φ-plane. However,
such analytic complication can easily be overcome if the following integral representation is
employed:

eq(φx) = 1

�(1/(q − 1))

∫ ∞

0
dt t1/(q−1)−1 exp{−[1 + (1 − q)φx]t} (11)

where �(s) is the gamma function. Using this representation in equation (9) and changing the
order of integration, one finds the right-hand side to be

1

�(1/(q − 1))

∫ ∞

0
dt t1/(q−1)−1e−t

∫ β+i∞

β−i∞
dφ

e(q−1)txφ

2π iφ

= 1

�(1/(q − 1))

∫ ∞

0
dt t1/(q−1)−1e−t θ((q − 1)tx). (12)

Since q > 1, θ((q − 1)tx) = θ(x) and therefore one sees that equation (9) in fact holds.
This non-uniqueness of the representation of the step function thus turns out to lead to non-
uniqueness of canonical ensemble theory.

Equation (9) may be understood from the viewpoint that the step function is of discrete
topology and therefore can remain invariant under continuous deformation of the exponential
function in the integrand in equation (6). In this respect, it is clear that the use of the q-
exponential function is nothing but one particular choice of deformation.

Now, we wish to evaluate the integral of the form

θ(ε −M) =
∫ β+i∞

β−i∞

dφ

2π iφ
eq((ε −M)φ) (13)
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with M in equation (4), using the method of steepest descents for large N . What is essential
here is that in the method of steepest descents the large-N approximation is performed inside
the integral. This is also a crucial point, from which non-uniqueness of canonical ensemble
theory arises.

Let us recall the following property of the q-exponential function:

eq(a) eq(b) = eq(a + b + (1 − q)ab). (14)

If the quantities a and b are of O(1/N), for example, then

eq(a + b) ≈ eq(a) eq(b) (15)

up to O(1/N2). Therefore, recalling that ε is of O(N−1−δ) and each term in the sum in
equation (4) is of O(1/N), we can approximate equation (13) as follows:

θ(ε −M) ≈
∫ β+i∞

β−i∞

dφ

2π iφ
eq(φε)

N∏
α=1

eq

(
−φ 1

N
[a(mα)− ā]

)
. (16)

Noting that θ(ε− |M|) = θ(ε−M)− θ(−ε−M) and changing the integration variable
as φ → Nφ, we obtain

θ(ε − |M|) ≈
∫ β∗+i∞

β∗−i∞
dφ

sinhq(Nφε)

π iφ

N∏
α=1

eq(−φ[a(mα)− ā]) (17)

where sinhq(x) ≡ [eq(x)− eq(−x)]/2 and

β∗ = β

N
. (18)

Let us examine the condition in equation (10). In the present context, it is written as

1 − (q − 1)β∗N |±ε −M|max > 0. (19)

The rectangular distribution function we are considering here has a very narrow support with
the width 2ε. On the other hand, |±ε −M|max is of O(N−1−δ) with δ > 0. Therefore, in the
large-N limit, β∗ can be an arbitrary positive constant.

Thus, working out to the leading order in N , we can express the probability as follows:

pq(m) =
∑

m2,...,mN

P (m,m2, . . . , . . . mN)

≈ 1

W

∫ β∗+i∞

β∗−i∞
dφ

sinhq(Nφε)

π iφ
eq(−φ[a(m)− ā])

×
∑

m2,...,...mN

N∏
α=2

eq(−φ[a(mα)− ā])

= 1

W

∫ β∗+i∞

β∗−i∞
dφ

sinhq(Nφε)

π iφ

eq(−φ[a(m)− ā])

Z̃q(φ)
exp

[
N ln Z̃q(φ)

]
(20)

where

Z̃q(φ) =
∑
m

eq(−φ[a(m)− ā]) (21)

and W is the number of possible configurations satisfying equation (1) and is given by

W =
∫ β∗+i∞

β∗−i∞
dφ

sinhq(Nφε)

π iφ
exp

[
N ln Z̃q(φ)

]
(22)
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which ensures the normalization for pq(m). Now, using the real part β∗ of φ, the steepest-
descent condition reads

∂Z̃q

∂β∗ = 0 (23)

which leads to

pq(m) = 1

Z̃q(β∗)
eq

(−β∗[a(m)− ā]
)

(24)

ā =
∑
m

Pq(m) a(m) (25)

simultaneously, where Pq(m) is given by

Pq(m) = [pq(m)]q∑
m[pq(m)]q

. (26)

These results follow from equation (7) and the relation

deq(x)

dx
= [eq(x)]

q . (27)

We emphasize that the above steepest-descent approximation is mathematically well
justified, since the last factor in the integrand in equation (20) is the ordinary exponential
function.

The distribution function in equation (24) is seen to asymptotically exhibit the power-law
behaviour

pq(m) ∼ 1

[a(m)]1/(q−1)
(28)

as desired. Here, let us recall the exact Lévy-stable distribution with characteristic exponent
α in the half-space [10]:

Lα(a(m)) = 1

2π

∫ ∞

−∞
dk exp

{
−ika(m)− λ|k|α exp

[
iε(k)

ηπ

2

]}
(0 < α < 1) (29)

where λ is a positive constant, η a constant satisfying |η| � α and ε(k) = k/|k| the sign
function of k. Lα(a(m)) has the following asymptotic form for large values of a(m):

Lα(a(m)) ∼ [a(m)]−1−α. (30)

Comparing equation (28) with equation (30), we find that q and α are related to each other as

q = α + 2

α + 1
. (31)

From this, we also find that δ in equation (2) satisfies

δ = 2q − 3

2 − q
. (32)

In addition, it has recently been shown [11] that the distribution in equation (24), in fact,
converges to the exact Lévy-stable distribution in equation (29) by many-fold convolutions in
accordance with the generalized central-limit theorem. On the other hand, it is evident that in
the limit q → 1 + 0 all the discussions become reduced to the ordinary ones in Boltzmann–
Gibbs theory with the familiar canonical distribution of the exponential form.

In the field of thermodynamics of chaotic systems [12], Pq(m) in equation (26) is referred
to as the escort distribution, which is also a probability distribution associated with the original
distribution pq(m). The steepest-descent condition yields the fact that the arithmetic mean
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of {Aα}α=1,2,...,N coincides with the generalized expectation value with respect to the escort
distribution as in equation (25).

To interpret β∗ in equation (24) as the inverse temperature, it is necessary to consider
the zeroth law of thermodynamics. This is a non-trivial problem for systems obeying power-
law distributions. However, it has recently been found [13] that, by considering macroscopic
thermodynamics of equilibrium of such systems in contact with each other, β∗ can indeed be
regarded as the physical inverse temperature.

In conclusion, we have shown that not only ordinary Boltzmann–Gibbs canonical
ensemble theory but also a theory for systems with power-law distributions can be obtained
from microcanonical basis with the principle of equal a priori probability. It is worth pointing
out that the structure in equations (24)–(26) is the characteristic of non-extensive statistical
mechanics [14]. It is known that the generalized canonical ensemble theory derived from
the maximum entropy principle based on the Tsallis entropy [15] with equation (25) as the
constraint gives rise to the distribution in equation (24). However, it is essential to recall that
here we made no initial assumptions on the definition of the statistical expectation value and
the form of the entropy. Also, we may mention that the same result as the present one can also
be obtained by three other independent methods: the counting algorithm [16], the generalized
central-limit theorem [17] and the macroscopic thermodynamics of equilibrium of systems in
contact with each other [13].
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